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Abstract
Traditionally, building floorplans are designed by architects with their usability, functionality, and architectural aesthetics in
mind, however, the structural properties of the distribution of load-bearing walls and columns are usually not taken into account
at this stage. In this paper we propose a novel approach for the design of architectural floorplans by integrating structural layout
analysis directly into the planning process. In order to achieve this, we introduce a planning tool which interactively enforces
checks for structural stability of the current design, and which on demand proposes how to stabilize it if necessary. Technically,
our solution contains an interactive architectural modeling framework as well as a constrained optimization module where
both are based on respective architectural rules. Using our tool, an architect can predict already in a very early planning stage
which designs are structurally sound such that later changes due to stability reasons can be prevented. We compare manually
computed solutions with optimal results of our proposed automated design process in order to show how much our proposed
system can help architects to improve the process of laying out structural models optimally.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Modeling packages J.6 [Computer Applications]: Computer-aided Engineerings—Computer-aided design

1. Introduction
In the workflow of architectural building planning, one of the crit-
ical early tasks is to find the best structural layout for a given ar-
chitectural model. This involves deciding the size and placement of
structural elements like beams, slabs, and columns in an underlying
design. Currently, this task is usually performed in a rather ad-hoc
fashion driven by the intuition and knowledge of architectural and
structural rules by the architect, requiring a high degree of expert
knowledge and experience, while the exact structural feasibility of
the design is usually computed in a later stage.

In practice, an experienced architect can oversee most struc-
turally critical decisions. However, if due to the growing complex-
ity of the actual design, the number of structural elements that have
to be added or modified increase, finding a solution that fulfills all
necessary optimality criteria becomes a laborious and error-prone
task. Therefore, it is desirable to determine feasible structural lay-
outs computationally, and present them to the user already in the
early design and shape-exploration stage. This allows exploring
multiple feasible solutions and avoiding flaws in the structural de-
sign. We call such an approach integrated structural-architectural
design.

The high-level goal of integrated structural-architectural design
is to maximize the architectural potential while at the same time
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minimizing the number of “unwanted” elements, i.e., such ele-
ments that the architect is forced to introduce due to stability rea-
sons. In fact, most structurally important elements, like beams and
columns, are actually unwanted elements. For example, columns
in a room influence the spatial properties of the room and thus
limits the freedom of interior design. In addition, removing such
unwanted elements lowers the costs of the building. Current work
in computer graphics about finding structural feasible designs
[WSW∗12] focuses mainly on changing the placement and shape
of the given elements, while the introduction of new or removal of
existing stabilizing elements is an open research problem.

In this paper, we propose two methods to support architects in
multi-level integrated structural-architectural design: (1) An inter-
active rule-based solver assisting the architect in finding the opti-
mal vertical structural element placement by automatically adjust-
ing floorplans based on architectural and structural design princi-
ples. (2) We provide the user with fast feedback about the structural
stability of the building by introducing a approximative calcula-
tion model. Based on this model, our method provides suggestions
on how to place structural elements like beams, slabs and columns
such that loads are optimally distributed by utilizing existing walls
and finding the minimum number of necessary columns. In contrast
to previous work in structural design exploration [WSW∗12], our
method can introduce and remove load-bearing elements in order to
obtain a feasible design. This is achieved by a novel non-linear op-
timization algorithm that tries to optimally distribute loads between
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existing walls and a minimum number of needed columns.

In the following, we review the literature on architectural and
structural design in Section 2. In Section 3 we describe our interac-
tive modeling schema, while Section 4 describes the structural anal-
ysis model used. Our main contribution, the structural optimization
algorithm is presented in Section 5. Finally, in Sections 6 and 7, we
present our results and conclusions.

2. Related Work

In the literature, structural laying out as an effort to find optimal ar-
rangement and placement of structural elements is a topic with long
research history in structural engineering, architecture and CAD,
but also in computer graphics and modeling. Generally, it can be
categorized based on two main approaches of early design opti-
mization.

Shape Optimization. These approaches use architectural ele-
ments that will be applied as structural elements as input de-
fined by the user and try to find an optimal structural solution
by resizing or relocating the elements. Usually, also form-finding
methods that search for the optimal configuration of structure
[PSB∗08, Blo09, MIB15], or structural shape optimization of inte-
rior architectural-structural elements [WOD09,WSW∗12] are cate-
gorized in this category. Compared to our work, this methods don’t
allow to add additional structural elements and just deal with mod-
ifying existing ones.

Topology Optimization. In topology optimization, which our
method belongs to, the optimization is not performed on the in-
put directly, but a structural model is derived from it. The whole
optimization is then done on the structural model and results are
transferred back to the initial one. In general, architectural elements
are not considered as explicit structural elements a priori, but have
the potential of becoming such elements, depending on their usage.
For instance, in a multi-floor building, an inner wall on a single
floor would be considered as non-structural. However, if the wall is
placed at the same position in all floors, it becomes a load-bearing
hence structural element.

Early efforts tried to employ heuristic methods such as knowl-
edge based expert systems (KBES) [Mah84, Owe90, SWK00]
which used architectural, structural, and financial knowledge to
propose appropriate structural grid layouts as regularly spaced bay
sizes [Mah84, Owe90, SW97], or regular spaced bay sizes with lo-
cal irregularity of column placement [SWK00]. Other methods uti-
lized case-based reasoning (CBR) [KR97,FRG00,SPnM00] to gen-
erate structural floor layouts by reusing solutions obtained from
example designs. Genetic algorithms (GA) have also been used
to find regular structural grid layouts according to different ob-
jectives including minimizing different types of building project
costs [GK02, RMB03], maximizing the flexibility of architectural
spaces [PG99], or both of them [SMM03]. All of this methods just
deal with rectangular buildings and can only handle equally spaced
grid cells defined by columns and beams, not taking into account
load bearing walls.

Eventually, also buildings with more complex overall horizontal
configurations and interior design have been approached with GA.

For example, Shaw et al. [SMG08] applied GA for structural lay-
out of rectilinear floor plan shapes but still only uses equally sized
grid cells. Nimtawat [NN09,NN10] proposed a method to find opti-
mal beam-slab layouts for floor plans with given interior walls and
columns using GA. Again load-bearing walls were not taken into
account and only beam locations, but not column locations were
optimized. Our method, in addition, allows for different layouts in
different floors, which was also not possible here.

One of the latest related efforts have been presented by
Hofmeyer et al. [HD15] where a 3D architectural design is pro-
vided with structural elements via a grammar [DH13]. These ele-
ments were then automatically made conformal [HvRG11], stable
[SH12], and optimized [HD13]. Subsequently, the architectural de-
sign is modified -as a function of its related structural performance-
and updated to conform to the initial building plan. Afterwards,
the architect can again modify the resulting floorplan. This co-
evolutionary approach has been verified with a genetic algorithm,
and the grammar can also be omitted by letting the optimization
find complete structural topologies itself. This methods were suited
mainly for structural engineers and not for early design since they
tend to modify the overall configuration of the building.

Finally, the use of automated generation of spatial layouts with-
out taking the structural aspect into account has also been inves-
tigated in the computer graphics community [MSK10, LYAM13,
BYMW13]. Another approach to ensure stability of constructed
objects is given by Schulz et al. [SSL∗14], where a FEM-model
is used to ensure that constructed furniture is stable. Also gen-
eral shape editing, in particular free-form shape editing [BSK∗13,
ZTY∗13], has been investigated in an architectural context by opti-
mizing surfaces such that they fulfill architectural requirements.

3. Architectural Modeling
The architectural modeling framework proposed in this paper is
an interactive tool that allows the architect to create floorplans for
masonry buildings. The limitation to this type of buildings is not
a general limitation of the proposed algorithmic solution, but the
real architectural and structural principles for this type of build-
ings are well documented, for example, in Eurocodes [Eur05] or
ACI [ACI14]. In this work, we focus mainly on regulations given by
the Eurocodes, but the same rules are also used in other standards
for structural engineering, although the values of some parameters
like the distances between objects might differ.

3.1. Initial Modeling
Template Elements. In our design system, the architect generates
the floorplan at each level using the horizontal overall configura-
tion, which in other words is the 2d top view of the building. All
members of the configuration are modeled by using basic 2d rectan-
gular template elements, which are abstracted representations of the
building’s main components. In particular, there are templates for
the main boundary, projections, rooms, stairs and connected voids,
and also for openings which comprise doors and windows. Figure
1(left) shows an exemplary composition of such elementary mem-
bers as well as an a description of the members of a stair (right).
A projection in the architectural sense is defined as a component,
member, or part of an architectural volume which juts out from the
building.
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Figure 1: Left: Floorplans are composed of multiple template ele-
ments. Right: Stairs consist of two stair panels (green) and a land-
ing (red) between them. A void (blue) has to be present above each
stair.

Modeling Process. The spatial design always starts with the gen-
eration of the initial boundary rectangle and by defining the number
of stories. The architect can then use further template elements, e.g.
projections, to extend the main boundary and to model the horizon-
tal overall configuration for all floors. After that, rooms and stairs
can be modeled for each floor inside the generated building enve-
lope. At each step of the process, the main envelope, including the
boundary and projections, can be manipulated. Finally, after adding
rooms in the interior, openings, including doors and windows, can
be added to the walls of the envelope. Adding openings is not al-
lowed in earlier stages since inserting rooms can split previously
modeled openings on the wall of main envelope.

User Interactions. During the modeling process, three types of
user interactions are possible: (1) Adding or removing objects, i.e.,
each template element can be added or deleted individually on the
canvas. (2) Translate (dragging) whole objects, i.e., all template el-
ements can be moved. (3) Translation of segments, in particular,
a segment is a part of an object, like a wall, an opening, or stair
boundary. A wall can either belong to the main boundary, to pro-
jections or to rooms. In this way, objects can be resized.

3.2. Design Principles
In architectural design, a floorplan model needs to conform to sets
of (1) architectural and (2) structural constraints. In the traditional
manual workflow, the architect is responsible for the appropriate
placement of all elements in a way that respects all these con-
straints. In contrast, the goal of our work is to lift the burden of
having to take care of all small details by providing automatic lay-
out adjustments. This is done during the initial generation and spa-
tial placement of elements, as well as during the refinement of the
generated layout. Also, keeping the layout consistent with these
constraints makes sure the layout forms a suitable input for the
structural optimization stage later on.

Architectural Constraints. The initial spatial design used for the
structural layout should conform to basic architectural require-
ments, which ensure that the building is usable for its intended

purpose. For this, we enforce the following principles during the
modeling phase:

• The distance between two parallel segments representing walls,
boundaries of voids in the floor above stairs, or stair boundaries
in a single floor shall be more than 0.8m.

• The width of a stair should not be more than 1.5m.

• The length of each stair panel (c.f. Figure 1, right) is related to
the height of the floor and the position of the landing between the
panels. Since the slope of the stair is constant, lowering the land-
ing would shorten the lower panel and enlarge the upper panel..

• A void above a stair has to be generated automatically based
on the minimum space needed to be open above. This is mainly
based on the height needed for a human to walk up the stair.

Structural Constraints. The geometry of each template element
as well as the geometrical and topological relationships between
different templates are constrained by predefined structural re-
quirements that are imposed from physics and from model lim-
itations. We formulated a set of geometric rules which conform
to principles according to building codes for masonry structures
( [Eur05, Eur04]):

• The ratio of the longer to the shorter side of the initial boundary
rectangle (exterior walls excluding projections) shall be equal to
or less than 4.

• The longer edge of the initial boundary rectangle shall be equal
or less than 40m.

• The longer side of a room has to be shorter than 8 meters to
prevent beams from bending (c.f. 4.2).

These rules limit the horizontal overall configuration and are en-
force interactively during the modeling process. Additionally, the
existence of projections reduces the regularity of the configuration.
To avoid irregularity in an independent structural volume, we ap-
ply a set of regulations that limit the geometry of projections. We
enforce them by introducing the following rules based on the Eu-
rocodes [Eur05]:

• The minimum distance between two projections on the same
wall is 0.2m.

• The overall 2d boundary of a building in top view, including the
main boundary and projections, is similar for all levels.

• The ratio of the area of projections to the total floor area shall be
less than 0.15.

• A projection cannot intersect two edges of the boundary at same
time.

• A projection cannot intersect another projection.

3.3. Consistency Check.
All discussed constraints are enforced by an iterative consistency-
check procedure in real time. If one of the constraints is violated
during user interaction, the system tries to automatically adjust ele-
ments such that all constraints are satisfied. This is done by using a
set of iteratively applied checks, which first verify the validity of a
constraint and in case of a violation adapt the floorplan. These con-
straints are applied in such an order that elements that limit other
elements are always checked first, for example, boundary walls
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are checked before projections, and projections are checked before
rooms. Nevertheless, it is in some situations necessary to adjust
parts of the floorplan that could violate previously evaluated rules.
In this case, the consistency check is repeated from the last con-
straint that could be violated. For some of the constraints, namely
the height of stair panels and the size of voids above stairs, it is
not possible to come up with an automatic solution. In this case,
the user is informed about the constraint violation by marking the
violating template in red.

In addition to the iterative consistency check that is applied af-
ter each modification of the building, some constraints are already
communicated to the user during a manipulation operation. Stairs,
for example, are marked in red when the width during a resize op-
eration becomes too large.

4. Structural Analysis
In this section, we provide the details of our structural analysis
module for masonry structures, which forms the core of our in-
tegrated structural-architectural design framework. This stage is
called whenever the user has modified the input floorplan and all
requirements described in Section 3 are fulfilled, which is typically
ensured by the consistency check. In contrast to commercial FEM
models, our method is fast enough to provide the user with imme-
diate feedback about the structural stability.

The structural analysis uses a simplified abstract representation
of a building, the so-called structural grids, and is based on the
strength-of-material approach [Wah07]. We first describe how the
structural model is represented using structural grids, and how to
convert an input floorplan into a structural grid. This is then used
to calculate the loads and maximum capacities or compressional
strenghts of structural elements.

4.1. Structural Grid
Levels. A building consists of several levels, which form the top-
most structure of our model. Each level (as shown in Figure 3a) is
defined by one structural grid. Formally, a structural grid for level
L is a planar graph

L = (C,B) , (1)

with vertices C = {c1, . . . ,cn} and edges B⊆C×C. We also define
S as the set of faces s of the graph. We write edges as bi j = {ci,c j}
and refer to faces by closed edge loops, i.e., s = bi j,b jk, . . . ,bli for
some s ∈ S.

Structurally, the vertices C represent columns, edges B represent
beams, and faces S represent slabs (cf. Figure 3), and will be further
denoted as such.

Columns. Columns are vertical structural elements where concen-
trated loads are transferred to the ground and are shown in Figure
3a as circles. Columns are either real structural columns (purple
circles), or “virtual” wall columns (orange circles) that are used to
represent wall-wall or wall-beam intersections. These wall columns
do not physically exist in the building but describe special points on
walls where forces have to be transferred. Further, columns are ei-
ther fixed, i.e., their position is fixed or variable, i.e., their position

can be moved during the optimization (see Figure 3b, dashed or-
ange lines). This results in a partition of C into four subsets:

C = {CFW ,CVW ,CFR,CV R}. (2)

Fixed wall columns (CFW ) correspond to endpoints of walls and
wall-wall intersections. Variable wall columns (CVW ) correspond
to wall-beam intersections, and are moved together with the beam.
Fixed real columns (CFR) are those that are present in all levels of a
floorplan and need to be fixed so that loads can be transferred to the
next level. Variable real columns (CV R) can be moved freely. Both
of these correspond to beam-beam intersections.

The position of a column ci is given by p(ci) = {x,y}.

Beams. Beams are used to represent horizontal load-bearing ele-
ments that resist distributed or concentrated loads and are shown
in Figure 3a as thick lines. There are two different types of beams:
Real beams BR connect two arbitrary columns in places where there
is no load-bearing wall, while wall beams BW connect two wall
columns and abstract load-bearing walls (see Figure 3b). Thus,

B = {BW ,BR}. (3)

Real beams bend and transfer load to the connected columns, while
wall beams transmit load down to the ground. In order for this to
work, a load-bearing wall has to be continuous from the topmost
level to the ground level, i.e., a corresponding wall beam has to
exist in each level (similar to fixed real columns).

Slabs. Slabs are the faces of the structural grid L. In practice, they
correspond to horizontal or inclined flat rectangular panels which
resist flexure in two directions [ACI08]. This means that in the cre-
ation of the structural grid, we need to make sure all faces are rect-
angular.

4.2. Computational Model
Based on the structural elements above, we developed a model to
calculate the structural stability of a building that is on the one hand
fast enough to give immediate feedback to the user and to allow an
optimization to be run in reasonable time. In addition, this model
has to be physically plausible and yield correct results. Our model
is based on the strength-of-material approach [Wah07] which is
also used by architects during design but makes some assumptions
about the building that allows for faster calculations.

The first simplification is that our method constraints beams, and
thus walls, to follow one of the horizontal principal axes. This al-
lows for a much simpler algorithm to determine the force distribu-
tion of slabs since they are always rectangular.

According to Place [Pla07], the maximum length for two-way
concrete slabs supported by boundary beams or load-bearing walls
is 9 meters, while the ratio of the thickness to the longer side length
is 1/30. When assuming 25cm for the ceiling thickness, the max-
imum length of a beam is 8 meter in order to prevent violation of
the maximum beam and slab shear and bending stresses. Using this
assumption, it is not necessary to include the full calculation of the
maximum bending moment in the optimization, since beams with
a length below this value are guaranteed not to bend too much.

Another phenomenon that should be taken into account is buck-
ling, which causes bending of columns due to compressional forces
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(b) (d) (e)(a) (f )(c)

repeat until stable optimize columnsBuilding A optimize layout

Figure 2: Structural layout analysis and optimization consists of four stages. The input floor plan (a) is used to create an initial structural
grid (b). This grid is analyzed and the feasibility of all elements is calculated (c, unstable elements are shown in red). In all slabs adjacent
to infeasible elements additional columns are added (d). The steps (c) and (d) are repeated until there are no more infeasible elements and
a stabilized grid is found. On this grid the column optimizer is run which merges columns and returns a minimal stable configuration (e).
Afterwards the arrangement of columns is optimized (f).

applied to them. In general, this is more of a problem when working
with slender structural elements as used in truss structures.

According to ACI 318 [ACI08], buckling can be neglected as
long as the Equation 10.6 of ACI 318 [ACI08] is met, result-
ing in non slender concrete columns. For columns with square
shaped cross section this is the case when the ratio between the
height of the column and the width of the column is less than 6.4.
When assuming an effective column height of 2.6m, buckling in
concrete columns with four (six) steel bars and a compressional
strength (CCol) of at least 2100kN (2500kN) is negligible accord-
ing to ACI 318, Equation 10.2 (Compressive strength of concrete
= 16000 kN/m2, compressive strength of steel = 400000kN/m2, di-
ameter of steel bars = 20mm, results are rounded). The goal of the
model presented here is to have a structural calculation that can be
done as fast as possible to allow for an iterative solver to evaluate it.
In order to ensure that the simplifications made do not compromise
the structural stability of a building, a comparison with a commer-
cial finite-element system is presented in Section 6.3.2.

4.3. Structural Grid Generation

Wall Column
Real Column
Wall Beam
Real Beam

Slab

Fixed Wall Column

Variable Wall 
Column

Wall Beam

Real Beam

Real
Column

(a) (b)

Figure 3: Structural elements used in the optimization stage

Taking the assumptions described above into account, the first
goal is to create a structural grid as defined in Section 4.1 from an

(a) (b) (c) (d)

Figure 4: Steps for generating a structural grid. (a) initial floor-
plan, (b) columns and beams are generated from boundary walls,
(c) inner load bearing walls are added, (d) all slabs are split to
rectangular areas by inserting additional beams.

input floorplan. This grid serves as the basis for structural analysis
and further optimization (cf. Figure 2a,b). It is created after each
user interaction from the input modeled by the architect (cf. Figure
4a).

First, we generate a set of columns and beams (cf. Figure 4b)
from the outer boundary of the floorplan. This is the envelope of
the outer wall rectangle and all projections. Since all of these walls
are load bearing, only fixed wall columns and wall beams are used.
When the exterior wall beams are found, the interior is analyzed.
For this, a grid containing all potential wall beams representing in-
terior walls is constructed for each floor, which is done by inserting
all beams and columns that are given by rooms. The grids of all
floors are then intersected such that beams are split at beam-beam
intersection points. Then all beams that do not exist in all floors
are removed, just leaving such beams that represent interior wall
segments that are present from top to bottom. The result of this op-
eration is added to the exterior wall grid created in the first step and
is depicted in Figure 4c. The so created grid is the base grid of the
building, which is the same in all floors.

In order to analyze a single floor, the system starts with the base
grid and adds all structural elements present in the floor above. Ad-
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ditionally, such elements are added that are potentially only present
in the particular floor, e.g., elements coming from stairs and voids
which build connections between floors. For each void in the ceil-
ing of a floor, four real columns connected by real beams are added
below the boundary of the void. The columns are then connected
to the next load-bearing wall segment in direction parallel to the
shorter sides of the void. For stairs located in the floor above the
current one, two columns are added below the lower ending of the
stair. These columns are connected by real beams to the next load-
bearing wall in all four directions.

Since several of the previously inserted structural elements can
have intersections or overlaps, the grid is cleaned up by creating
new columns at intersections and by splitting the beams there. In
addition, columns and beams that share the same location are re-
moved, just leaving the most restrictive element there.

The initial slabs are found as the faces of the planar graph defined
by columns and beams. For each of these slabs, the system analyzes
whether or not it is rectangular. If this is not the case, the slab is
split by inserting additional beams going from columns with an
inner angle larger than 180◦ to the next load bearing wall. This is
repeated until all remaining slabs are rectangular. An example for a
final structural grid determined by our algorithm is shown in Figure
4d.

4.4. Computation of Loads
At each level of a building, there are two main sources of load to be
borne: Load coming from the ceiling itself (distributed loads) and
loads that are transferred from levels above. The goal is to find the
amount of load ω that is placed on columns and beams.

Beams. In a first step, the weight of the ceiling in each slab is
distributed to the adjacent beams. In particular, three load areas are
constructed for each side of the slab, two triangular ones and a rect-
angular one (cf. 5a). The force intervals along a side are given by
{[0,a/2], [a/2, l− a/2], [l− a/2, l]}, where a is the length of the
shorter side of the slab and l the current one. An example is given
in Figure 5a, where load areas are marked by red lines and colored
background. Note that the rectangular intervals have zero length on
the smaller side of a slab, but for the model we assign a load of zero
here to keep the calculation similar on all sides. For each beam in-
cident to the slab, the overlap with these intervals is calculated, and
the corresponding forces (shown by arrows) are computed. This
procedure is performed for all slabs, such that each beam gets a
number of distributed forces FD(bi j) = { f0, f1, ..., fn} attached to
it. Each force has a position p( fi), which is in the center of the in-
terval for rectangular areas and 2/3 to the longer side for triangular
ones. In addition, a load w( fi) is calculated, which corresponds to
load area times a ceiling material constant CCeil .

The combined compressional load that is applied to a beam can
then be calculated as the sum over all applied force:

ωD(bi j) = ∑
f∈FD(bi j)

w( f ) , bi j ∈ BW . (4)

This load is only relevant in case of wall beams since real beams
do not carry any loads themselves. It is nevertheless calculated for
all beams in order to allow for merging of beams later on.

(1)

(2)

(3)

(b)

Load Area Load

(a)

Figure 5: (a) Each slab is split into several load areas (colored
areas), with corresponding loads (arrows). (b) Loads coming from
ceilings (1) are distributed via real beams (2) to columns, where
they form concentrated loads (3).

Columns. Since real beams cannot carry any load themselves,
all loads applied to them needs to be transferred to the adjacent
columns, resulting in equivalent concentrated loads on each column
(see Figure 5b, where the loads of the ceiling (1) are distributed via
beams (2) to the adjacent columns, where they result in concen-
trated loads (3)). To calculate these loads, the moment distribution
method is used to find the reaction on supports based on the static
equilibrium conditions:

ωD(ci) = ∑
bi j∈BR

∑
f∈FD(bi j)

‖p(c j)− p( f )‖
l(bi j)

w( f ) , (5)

where l(bi j) is the length of the beam bi j.

This gives a good estimation of the loads coming from the cur-
rent level itself. In addition, each column and beam has an initial
load ωI , which is 0 for the topmost floor and for newly inserted
structural elements. In all other floors, ωI is given by the amount of
load placed on the corresponding element in the floor above.

4.5. Computation of Compressional Strength and Capacities
In addition to the actual loads ω, also the maximum compressional
strength Ω of a structural element has to be calculated. The method
used depends on the type of structural element. Load-bearing wall
beams have to resist distributed forces coming from the adjacent
slabs. In contrast, real and wall columns have to resist concentrated
loads transferred to them by real beams.

Beams. The capacity of each wall beam representing a load-
bearing wall depends on the size of this wall and is computed as

Ω(bi j) = l(bi j) ·TWall ·CWall , bi j ∈ BW , (6)

where TWall is the thickness of the represented wall and CWall is a
material constant describing the maximum load capacity of a wall.
Since real beams transfer all their loads to the adjacent columns,
their maximum capacity is set to zero.

Columns. For real columns, the capacity is given by a constant
Ωci =CCol , which depends on the material used and the size of the
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column. Details on how this number can be determined for a given
material are shown in ACI 318 [ACI08].

Wall columns are used to represent connections between real
beams and walls, thus they represent transfer points where loads
from beams are transferred onto walls. These loads are concen-
trated loads, since they are applied on a relatively small area of the
wall. Concentrated loads spread out from the loaded area towards
the bottom of a wall in a 60◦ trapezoid, but at maximum to the clos-
est corner of the wall segment. The effective area of the bearing is
determined as the size this trapezoidal shape has at the mid height
of the wall. Since the same load is harder to bear on a smaller area,
the enhancement factor β describes how much the capacity of the
wall has to be enhanced for a given effective load area. Accord-
ing to the Eurocodes [Eur05], this maximum concentrated load is
calculated as follows:

ci ∈CFW ∪CVW : Ωci = βAbCConcentrate , (7)

where

β =

(
1+0.3

al
hc

)(
1.5−1.1

Ab
Ac f

)
, (8)

where

• CConcentrate is the compressional strength, which depends on the
material used

• al is the distance from the nearest end of the beam to the loading
point,

• hc is the half room height,

• Ab is the loaded area,

• Ac f = min
(
l
(
bi j

)
/2,hc sin(30◦)/sin(60◦)

)
·TWall is the effec-

tive area of the bearing,

• and 1.0≤ β≤min(1.25al/2hc,1.5).

Note that here also combined structural elements have to be
taken into account, especially for Ac f , since merging two columns
can enlarge the number of walls beams adjacent to a wall column,
which also increases the effective loaded area.

After calculating both, the actual load ω and the maximum ca-
pacity Ω, the system determines the stability of the level by check-
ing the following relations:

ω(ci) ≤ Ω(ci) , ci ∈C , (9)

ω(bi j) ≤ Ω(bi j) , bi j ∈ B . (10)

Depending on the result of this comparison, columns and beams are
marked as structurally feasible or not. Since wall columns represent
the concentrated load of beams on walls, the adjacent wall beams
of an unstable wall column are also marked as infeasible (cf. Fig-
ure 2c). Figure 7 also depicts the results of this stage for multiple
buildings in column (2), with infeasible regions indicated in red.

5. Structural Optimization
When the result of the structural analysis module (Section 4) is pre-
sented to the user and infeasible structural elements are found, the
user can request the system to suggest an optimal structural lay-
out. This is done by first adding additional structural elements to
get the grid in a stable configuration. Afterwards, an optimization
is performed to remove as many columns as possible to find the

A CB
bAB bBC

g(|C-B|)

objective function

g(|A-B|)

Figure 6: The objective function (red) has its minima when the real
column B is merged to either A or C.

best structural layout. Although we focus on masonry structures
here, the algorithm can be applied to all types of structural sys-
tems where the load-bearing walls are made of homogeneous ma-
terials. The general method presented in this section can even be
applied to load-bearing walls made of non-homogeneous material,
e.g., steel reinforced concrete, when a proper structural analysis
model is used.

Our main idea here is to move as many columns to the same
location, such that they can be merged. This means that only one
representative column is required at the particular location, which
reduced the total number of columns in the building.

The whole optimization takes several seconds up to a few min-
utes depending on the complexity of the floorplan and thus has to
be requested by the user.

Stabilization. When a floor has elements that are not feasible, a
stable superset of columns, beams and slabs is generated by adding
additional columns in the centers of all slabs that contain unstable
elements. Starting from these columns, additional beams are added
along both principal directions ending at the first intersection with
a wall beam. After insertion, the stability is calculated again, and
the process is repeated until a stable grid is found (see Figure 2c,d).

Column Merging. During the optimization, the system will try to
move as many columns as possible to the same location, thus the
load calculation has to be extended to take into account that several
structural elements at the same location act just as one structure. In
case of columns, this means, that just one of the columns at a spe-
cific location will be used as representative column. This is done
by calculating the sum of loads of all columns at the same location.
This sum is then used as load for the representative column while
the load on all other columns is set to zero. By always preferring
wall columns over real columns when merging, it is ensured, that
always the correct type is preserved (when a real column is inte-
grated into a wall it becomes a wall column). Similarly, the system
always prefers fixed columns over variable ones, which ensures that
always the most restrictive one is used. This means that columns are
always merged in the following order: CV R→CFR→CVW →CFW .

For beams, a similar method is used: The loads of all beams at
the same location are transferred to a representative beam, where
wall beams are always preferred over real beams (BR→ BW ). This
choice is important, since for wall columns the feasibility has to be
evaluated. Note, that merging two columns together always means
that also the columns of the beams are merged.
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Column Optimization. The next step is to optimize the layout
computed in the previous stage by finding a stable configuration
that has as few columns as possible. In the following equations,
columns in the resulting configurations are named c′i , while ci de-
scribes the initial columns.

Moving columns to the same position can be reformulated as
moving columns such that the length of as many beams as possi-
ble gets zero. This has to be reflected by the objective function that
needs to assign lower values to situations where a beam has reached
zero length. Since the beams and columns combination that lie on
the same line start and end at a wall column, the first and the last
column can never be moved in direction of the beams. Thus, the
total length of such a group will always stay the same, and when
decreasing the length of one beam, the length of another one will
increase by the same amount. When trying to minimize the sum of
the beam length directly, then this will result in a constant func-
tion that cannot be optimized since the first derivative will be zero.
When looking at Figure 6, where only column B can be moved,
an objective function is required that has minima when B is either
at the location of A or C. In order to express this, we define the
objective function (shown in red in Figure 6) as follows:

ob j(C,B) = ∑
bi j∈B

g(|p(c′i)− p(c′j)|) , (11)

where g(x) has to be a strictly increasing, differentiable and con-
cave function in the interval [0, inf], which means that the slope of
the gradients is strictly decreasing. In our implementation, we use
g(x) = x0.9, but other roots or g(x) = log(x+ 1) will provide very
similar results. Note that convergence speed is better when gradi-
ents are not too flat in the relevant domain.

Next, the problem has to be constrained such that the topology
of the structural grid is preserved. For this, linear constraints are
added such that the position of all columns in CFW and CFR are
fixed:

∀ci ∈CFR∪CFW : p(c′i) = p(ci) . (12)

For beams, constraints are added such that columns have to have the
same position on the axis perpendicular to the beam. Additionally,
the order of parallel columns has to be the same in the initial and in
the resulting configuration as long as the columns are not merged
together:

∀bi j ∈ B|px(ci) = px(c j) :

px(c′i) = px(c′j) (13)

(py(c′i)− py(c′j))sign(py(c j)− py(ci))≤ 0 , (14)

and

∀bi j ∈ B|py(ci) = py(c j) :

py(c′i) = py(c′j) (15)

(px(c′i)− px(c′j))sign(px(c j)− px(ci))≤ 0 . (16)

To prevent too large bending moments, constraints are added for
each real beam to ensure that they have a maximum length of 8m:

l(bi j)<= 8m , bi j ∈ BR . (17)

The final necessary constraints have to ensure that the gener-
ated solutions are always structurally plausible. This is achieved

by keeping the actual load on all elements below their maximum
capacity:

∀ci ∈C : ω(c′i) ≤ Ω(c′i) , (18)

∀bi j ∈ B : ω(bi j) ≤ Ω(bi j) . (19)

Layout Optimization. The result of the column optimization
stage, as seen in Figure 2e, is a structural grid with a minimum
number of columns used to keep the building in a stable config-
uration. Due to the optimization, which tries to move columns as
close together as possible, structural elements are visually not well
distributed over the building. From an architectural point of view,
it is not appreciated when columns are placed very close to walls.
Thus, an additional layout optimization is performed with the goal
of distributing variable columns equally over the floor. The ob-
jective function here has to penalize unequal distributions, which
means that for each column, the adjacent beams have to have a
length close to the average length of beams around the column:

ob j(C,B) =

∑
ci∈

CV R∪CVW

∑
bi j∈B

∣∣lx(bi j)− l̄x(ci)
∣∣+ ∣∣ly(bi j)− l̄y(ci)

∣∣ , (20)

where lx(bi j) is the length of beam bi j in x-direction and l̄x(ci)
is the average length of all beams adjacent to ci that are laid out
in x-direction. Since beams are always axis-aligned in this work,
either lx(bi j) or ly(bi j) is zero and the average length is calculated
over either one or two beams. The linear and non-linear constraints
(Equation 12-19) are the same as in the column optimization and
ensure again that the topology of the grid is not changed and that all
elements are structurally stable. In Figure 2f the result of the layout
optimization can be seen where the variable columns are distributed
equally over the building.

6. Results
6.1. Implementation
The user interface, together with grid generation and stabilization
is implemented in a prototypical C# framework. The more complex
calculations, load computation and optimization, are performed us-
ing MATLAB as backend. For the optimization itself, we use MAT-
LAB’s fmincon method with the active-set algorithm. Gra-
dients are generated using central differencing. Since the objective
function can be relatively flat, the function tolerance for the opti-
mizer has to be set relatively low. To avoid numerical issues, we
instead multiply the objective function by a factor of 102.

6.2. Results
Using the methods described in this paper, it is possible to gener-
ate plausible and structurally valid designs for a large number of
buildings. In Figure 7, three different buildings are shown (B-D),
where building D consists of four levels. Column (1) always shows
the initial floor plan, column (2) shows the initial grid as described
in Section 4, where the colors denote structural feasibility of ele-
ments. In column (3), the stabilized grid is shown, which serves as
the input for the column optimization described in Section 5, fol-
lowed by the final layout after layout optimization in column (4).
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Building B

(1) (2) (3) (4)

(1) (2) (3) (4)

(1) (2) (3) (4)

(1) (2) (3) (4)

Building C

Building D

1st �oor

Ground �oor

(5)

(5)

(5)

(5)

(1) (2) (3) (4) (5)

(1) (2) (3) (4) (5)

2nd �oor

3rd �oor

Figure 7: Results for multiple buildings. Column (1) always show the initial floorplan, column (2) shows the initial layout derived from the
floorplan, in column (3) the initial grid is stabilized. Column (4) shows the final result after column and layout optimization, while in column
(5) an architect extended this results by non-load bearing elements. Load bearing walls are always given in orange, while partitions are
painted in blue.

To ensure that our results give architecturally plausible structural
grids, we asked an architect to extend the generated results with
additional non-load bearing elements like partitions and furniture.
The results of this task can be seen in column (5). Figure 8a shows
the input of building D rendered in 3D, while Figure 8b shows the
final result of this building including added beams, columns and
slabs. Similar results are shown in Figure 10, also showing how the

final building could look like with added furniture.

As already mentioned in in the previous sections, there are sev-
eral parameters that have to be specified in the optimization like the
capacity of columns CCol , the concentrate load capacity of walls
CConcentrate, the weight of the ceiling CCeil (per sqm) and the com-
pressional strength of walls CWall . These values are given by the
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(a) (b)

Figure 8: Rendered 3D results of building D. Subfigure (a) shows
the initial building while in (b) the added structural elements are
overlayed.

structural properties of the used building materials and the dimen-
sion of walls, beams and columns and can, for example, be found
in the Eurocodes [Eur05], Section 3. Table 2 shows the used pa-
rameters for the four buildings presented in this paper.

According to the architects that worked with the implementa-
tion, the time required to design a structurally valid building could
be decreased due to the integrated structural stability checking. Es-
pecially for adding windows, doors and partitions, the process gives
valuable feedback about where they could be placed. The sugges-
tions generated by this system are, in general, much faster available
than with previous methods and do not only tell which elements are
infeasible but can also propose a suggestion on where to place ad-
ditional structural elements. For all the buildings shown here, the
consistency check as well as the initial structural stability calcula-
tion finishes in several milliseconds. The FEM system in compari-
son took between 30 seconds (Building B) and 5 minutes (Building
D).

The optimization takes, when requested by the user, between 45
seconds and several minutes for a final result, which is still an im-
provement compared to state-of-the-art work in this field (e.g.: Del-
gado et al. [Dav14] takes between 1.8 and 15.9 hours to complete).

6.3. Evaluation
To evaluate whether the proposed algorithm performs well, two ma-
jor points have to be shown: That the proposed load calculation
model produces correct results, which is done by comparing the
initial load calculation and the result configuration of each building
with a commercial FEM-package. In addition, it has to be shown
that solutions produced by the algorithm are useful to architects and
that they are similar or better than what an expert would produce.

6.3.1. Quality
In order to evaluate our method in terms of quality, a user study was
performed with three users. (1) An expert, (2) an architecture stu-

dent, and (3) an untrained person have been asked to find optimal
solutions for the four example buildings shown in Figure 7. The
goal here was to compare the results of our algorithm with manu-
ally designed solutions. When a user approaches this task and en-
counters a structurally infeasible configuration, they predict where
new structural elements have to be added. The test persons started
with the same inputs as shown in column (1) of Figure 7, and could
use lines as beams, points as columns or any other ways to show
how they would design a feasible model. When a floorplan was con-
sidered stable by the user, this was confirmed by a stability check
using our load calculation method (Section 4) and the users were
only allowed to continue with the lower storeys when their design
was stable.

Since direct comparison of the user results with the solutions
found by the optimization would not give meaningful results, a
number of metrics is used to determine the quality:

• Number of inserted real columns for each floor (RC)

• Number of inserted wall columns for each floor (WC)

• Number of inserted real beams for each floor (RB) (intersected
existing beams are not included)

An optimal solution would be a layout with as few real columns
(RC) and beams (RB) as possible that is structurally stable. In ad-
dition, a lower number of wall columns (WC) means that beams are
better aligned. When, for example, two adjacent rooms are split in
the same direction, it is better to connect the two additional beams
in a common point which makes them more robust against lateral
forces. Comparing these three metrics from the manually created
layouts with the automated solutions shows how well our system
performs compared to users. In order to see whether our algorithm
places additional elements on similar positions as users would do,
four additional metrics are introduced:

Ma =
Na

Ta
, Mb =

Nb
Ta

, Mc =
Nc

Tc
, Md =

Nd
Td

,

where

• Ta := total number of split slabs in automatically generated
model,

• Tc := total number of matching split slabs in both models,

• Td := total number of matching slabs with same direction both
models,

• Na := number of matching split slabs in both models,

• Nb := number of different split slabs in manually created model,

• Nc :=number of matching split slabs with same directions of di-
vision in both models,

• Nd := number of matching split slabs with same direction of
division and same divided parts in both models.

Ma: When inserting beams and columns to obtain feasible struc-
tural layouts, slabs are split. Therefore the placement users chose
show whether they predict the correct slabs to be split, which is
measured by this metric. This metric gives the ratio of similar split
slabs compared to the total number of splits.

Mb: Although the majority of manually split slabs can be the
same as in the automated optimal solutions, it is possible that users
split additional, unnecessary slabs. To overcome this, the ratio of
different split slabs to the total number of slabs is calculated here.
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Building: Building A Building B Building C Building D
Floor: 1st floor 1st floor 1st floor 4st floor 3st floor 2st floor 1st floor
User: Tool 1 2 3 Tool 1 2 3 Tool 1 2 3 Tool 1 2 3 Tool 1 2 3 Tool 1 2 3 Tool 1 2 3
RC 2 2 2 3 18 20 24 21 7 5 10 7 1 1 1 2 0 0 0 0 1 1 3 4 4 4 0 4
WC 2 2 2 2 14 8 10 12 7 11 8 10 2 2 2 2 0 0 0 0 2 1 2 3 4 2 0 2
RB 3 3 3 4 29 28 35 32 18 14 22 16 2 2 2 3 0 0 0 0 2 2 4 6 7 5 0 6
Ma - 1 1 1 - 0.88 0.88 0.82 - 1 0.66 1 - 1 1 0.50 - 0 0 - - 0 0.50 - - - - -
Mb - 0 0 1 - 0.12 0.18 0.18 - 0.33 0 0.33 - 1 1 1 - 0 0 - - 1 1.5 - - - - -
Mc - 1 1 0 - 0.40 0.40 1 - 0.66 1 0.66 - 1 1 0 - 0 0 - - 0 0 - - - - -
Md - 1 1 1 - 1 1 1 - 1 0.50 1 - 1 1 0 - 0 0 - - 0 0 - - - - -

Table 1: Results of the userstudy: RC - Added real column, WC - Added wall columns, RB - Added real beam. Ma - Mb Metrics to compare
the building (see Section 6.3.1)

Building Floor CCol(kN) CWall(kN/m2) CConcentrate(kN/m2) CCeil(kN/m2)

A 0 20k 20k 10k 25

B 0 10k 10k 10k 25

C 0 20k 10k 10k 25

D 3 2100 20k 20k 25

D 2 4800 20k 20k 25

D 1 4800 20k 20k 25

D 0 5800 20k 20k 25

Table 2: Individual values of parameters used for the computation
of buildings A-D. The last two columns show the runtime of the
optimization algorithm for each floor and the runtime of the FEM
system

Mc: After comparing whether or not the same slabs are split, also
the direction of this split is important. This metric gives the ratio of
slabs split in the same direction to the total number of similar split
slabs and is not evaluated when the result of Ma is already 0.

Md : In contrast to the proposed algorithm, users could split one
slab several times in the same direction. This metric measures the
ratio of slabs that are split in the same direction and by the same
number of splits to the total number slabs that are split in the same
direction and is not evaluated when the result of Mc is already 0.

If the value of the results of Ma, Mc, and Md is close to 1, and the
result of Mb is close to 0, the generated solution is close to what the
users have drawn. These additional metrics can only be used when
the initial layout is the same for all users, which can not necessarily
be assumed in multi-storey buildings.

Discussion. The results, given in Table 1, show that for simple
models like Building A, whose load-bearing walls are just the
boundary of a single floor, and which has a limited number of pro-
jections, our tool makes decisions which lead to a similar layout as
drawn by educated architects (User 1 and 2 chose exactly the al-
gorithmic solution, the untrained user placed too many additional
columns). For more complicated models, where the number of pro-
jections is higher, the results show that decisions of the algorithm
can be far from those made by an architect. In almost all cases, the
users added more real columns and beams, which shows that our
tool can specifically help architects in making decisions leading to
more efficient designs. In multi-storey buildings, one user (User 2)
was able to find a globally more optimal solution than our algorithm
by choosing non-optimal solutions in upper levels that reduce the

(a1)

(b1)

(a2)

(b2)

O
ptim

al Range

Optimal Range

Figure 9: Results of the FEM-model for building B: Vertical stress
on walls are shown for the input model (a1) and for the final
grid (a2). The vertical legend shows the optimal range for verti-
cal stresses in kN. The stress ratio on beams and columns is shown
in (b1) for the input model and in (b2) for the final grid. The hor-
izontal legend describes these stress ratios for frames in percent
(%).

amount of columns in lower ones. Note that for this result, the user
drawings had to be revised several times since the first tries were
not stable. Finding such a solution is currently not possible with the
proposed algorithm, since it optimizes each floor locally.

Regarding the location of splits, it can be seen that in simple
buildings, our algorithm tends to split the same slabs in the same
way as a user would do. Even in more complex buildings, the met-
rics Ma and Mb show that our tool splits mostly the same slabs.
In particular, algorithm never splits more slabs then the users. Re-
garding the directions of splits, it can be seen that trained users split
slabs mostly in the same direction. In some cases, the differences
in choice happen when symmetric solutions give the same result,
since such layouts have a similar quality in this case.

6.3.2. Correctness
In order to prove that our algorithm calculates the correct stability,
we applied a Finite Element Model to our results by using the com-
mercial software SAP2000. Beams and columns were modeled as
frame elements, while slabs and load bearing masonry walls have
been modeled as shell elements. Capacity parameters are assigned
similar to our method. For each building, two grids were checked:
The initial structural grid (c.f. Figure 7, Column 2) and the final op-
timized one (Column 5): For the initial grid, it was tested whether
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our model marks exactly the same structural elements as infeasible
that get a vertical ratio assigned by the FEM model which exceeds
the allowed range. Walls are compressionally resistant when their
vertical stress is greater than -10kN, where negative stresses mean
compression and positive numbers show tension stresses. Since
walls have to be considered as a whole, they are unstable when
more than 80% of a wall has a stress below -10kN (marked in pur-
ple/red in Fig. 9(a1),(a2)). Stress ratios on frames describe the ratio
between loads and capacities and should always stay below 1.0.
Figure 9(a1) shows vertical stresses on walls while (b1) shows the
stress ratio on frames for the initial model. For the final results of
our algorithm, the FEM model was used to prove that all of the gen-
erated buildings are stable (Figure 9(a2),(b2)). In all the buildings
tested, the comparison to the FEM model shows that exactly those
structural elements are marked as infeasible that are also marked
unstable by our method, while all our results are completely stable.

6.4. Limitations
Since this is a prototypical implementation, only one kind of each
structural element is supported. For example, only straight one-way
stairs are supported, but it would not be hard to add stairs with turns
since this would only affect the initial grid generation. Another lim-
itation is that the bending moment of real beams is not considered,
which does not allow for beams longer than 8 meters. Since archi-
tects and structural engineers would also avoid such beams when
working with conventional reinforced concrete slabs, this would
only be needed in very rare cases.

Compared to previous work on structural optimization for ma-
sonry buildings [WSW∗12], our method can modify the number of
structural elements, but can handle only vertical structural elements
and not arbitrary 3D designs. While the application of our method
shows that it can improve structural layout decisions and reduce er-
rors, the tool can also generate not exactly optimal solutions. This
is since it currently does not cover additional possibilities of initial
generation of structural members, like beam-to-beam connections,
which could reduce the number of columns when the distances be-
tween columns are small, like with corners of voids and stairs. Our
tool can also be improved by adding the possibility of changing
the location of load-bearing walls. Finally, this tool can also be
extended to find an optimal structural layout according to lateral
forces, which has not been considered in this research.

7. Conclusions
We have presented an interactive system that helps architects to
integrate structural knowledge into early architectural design. Our
system interactively enforces structural and architectural rules and
gives immediate feedback about the structural stability of a build-
ing, thus the architectural architect can explore a larger variety of
actually feasible designs and reduce the risk of proposing designs
that violate architectural or structural rules. The key contribution
of our method is a novel optimization algorithm that makes sugges-
tions on how to stabilize a building by varying not only the size and
shape, but also the number of load-bearing elements. We proved by
comparing our results with a traditional FEM-simulation that our
method generates structural plausible results and showed that our
system can be compared to manual results in a userstudy.

In the future, we would like to extend the approach to more gen-
eral design problems not limited to vertical structural elements.
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Figure 10: Results of building C: The initial layout (a) is supported with additional structural members (b). Subfigure (c) shows how the
building could look like with furniture.
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